

Fondo Europeo Agricolo per lo Sviluppo Rurale: l'Europa investe nelle zone rurali

OTTIMIZZAZIONE DELLA CONCIMAZIONE ORGANICA ASSISTITA DA SENSORI AL SUOLO

01 dicembre 2022

LA MAPPATURA DEI SUOLI AGRICOLI -I RISULTATI DEL PROGETTO CONSENSI

Pricca N., Gasparini A., Cabassi G. - Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria, Centro Zootecnia e Acquacoltura

OBIETTIVI

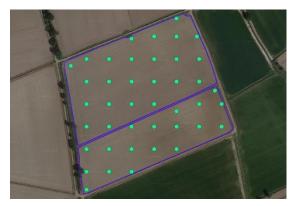
- Sviluppo di un algoritmo per la zonazione dei campi coltivati basato su metodi speditivi di raccolta dati di conducibilità elettrica, analisi NIR per sostanza organica di pochi campioni opportunamente selezionati per la stima del deficit di carbonio.
- Elaborazione di mappe di prescrizione per la distribuzione a rateovariabile dei fertilizzanti organici alla dose media di campo massima consentita (170 KgN/ha), disproporzionando in base alla mappa di carbon deficit con l'obiettivo di mantenere o migliorare il contenuto di sostanza organica dei suoli e massimizzare l'efficienza dell'azoto.

SUCCESSIONE DEI LAVORI

Anno I

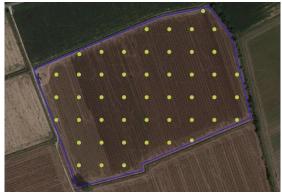
- Campionamento del suolo su griglia regolare
- Analisi di laboratorio ed ottiche dei campioni
- Mappatura geoelettrica
- Costruzione mappe di tessitura e sostanza organica

Anno II

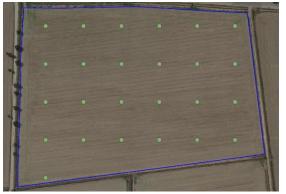

- Mappe di prescrizione basate sul carbon deficit
- Distribuzione a rateo variabile dei concimi organici
- Mappatura delle produzioni

Anno III

- Ottimizzazione disegno sperimentale
- Implementazione algoritmo elaborando target produttivi

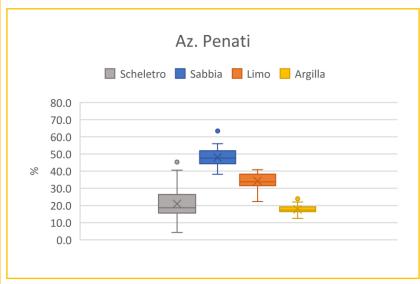

I CAMPI CAMPIONAMENTO SU GRIGLIA

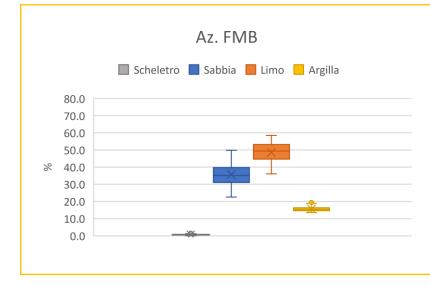
Az. Penati 42 punti

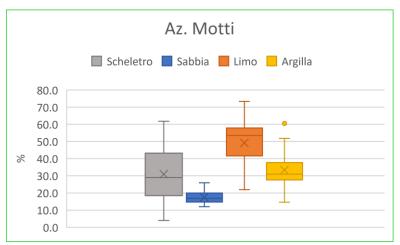

- 183 campioni di suolo 0-30cm
- I punti sono posti su griglia regolare con una maglia di circa 50 metri
- Raccolti circa 4-6 Kg per punto di campionamento per stimare correttamente anche lo scheletro

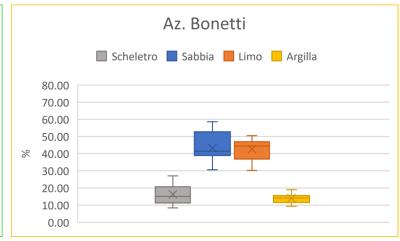
Az. Fondazione Bolognini 48 punti

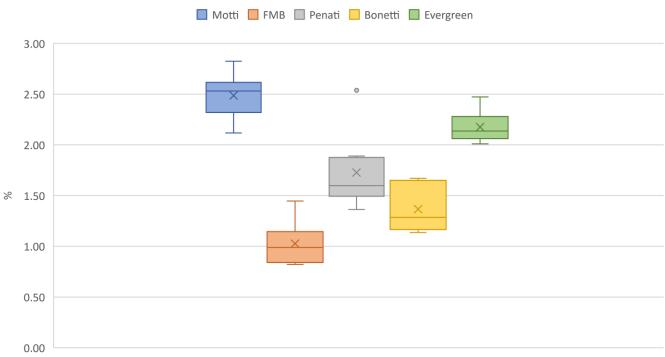
Az. Motti 43 punti


Az. Bonetti 25 punti

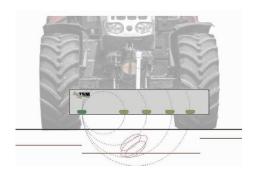



Az. Evergreen 25 punti


I CAMPI CARATTERISTICHE GRANULOMETRICHE

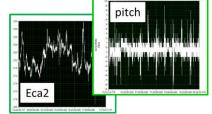


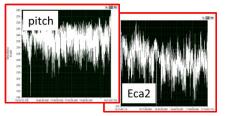
I CAMPI CONTENUTO DI CARBONIO ORGANICO



- Az. Motti: indirizzo zootecnico
- Az. FMB: indirizzo strettamente cerealicolo senza uso di concimi organici
- Az. Penati: indirizzo zootecnico
- Az. Bonetti: indirizzo Zootecnico
- Az. Evergreen: indirizzo cerealicolo con uso di concimi organici

SENSORE ELETTROMAGNETICO, TOPSOILMAPPER


Il sensore è sensibile alla **densità** di cariche elettriche per unità di volume di suolo. A parità di condizioni di compattamento, lavorazione e residui vegetali in superficie, tale grandezza fisica è influenzata maggiormente dalla granulometria (e non dalla sola tessitura) come mostrato in figura. Nelle nostre condizioni di campo il contenuto di sostanza organica è troppo ridotto per influenzare la conducibilità.



- 4 strati informativi
- Il sistema mette a disposizione i dati grezzi (formato .xml o .tdsm)
- È possibile effettuare l'elaborazione anche con software OpenSource

Strato	Profondità (cm)*
ECa1	0 – 25
ECa2	0 – 60
ECa3	0 – 95
ECa4	0 - 115

Il sistema è provvisto di sensori di distanza ausiliari per la rilevazione dei movimenti del sensore elettromagnetico rispetto alla superficie del terreno per la correzione dei valori di conducibilità elettrica durante l'acquisizione o come controllo delle elaborazioni in post.

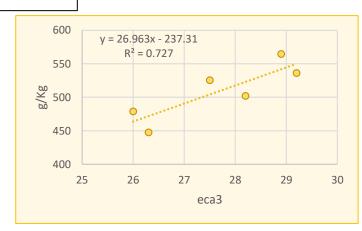
MAPPE DI CONDUCIBILITÀ ELETTRICA

Le **correlazioni migliori** si ottengono utilizzando i **dati di granulometria** (e non di tessitura) ed **accorpando i valori di limo e argilla** (o limo fine e argilla)

Individuazio

Individuazione punti di calibrazione

Acquisizione mappe di conducibilità

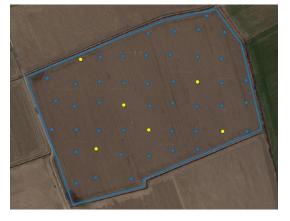

mS

26.90

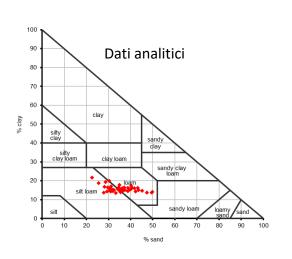
Suddivisione dei valori in classi di percentili

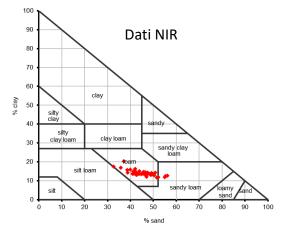
Limo e argilla (g/Kg)

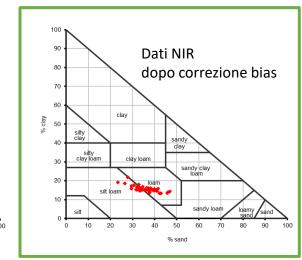
*Ø inferiore a 50μm



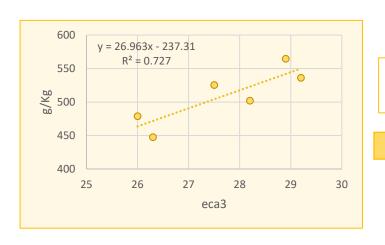
Calibrazione su punti selezionati

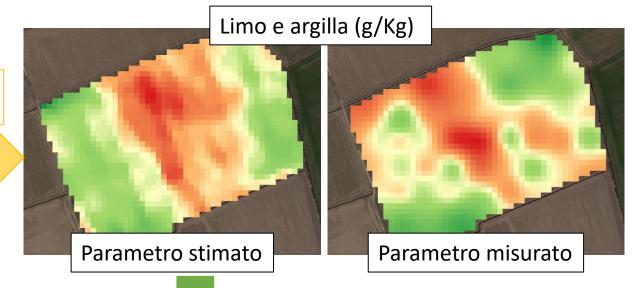

CORREZIONE DEI DATI NIR



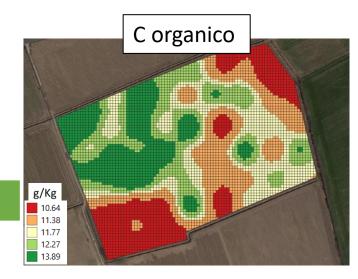

	g/Kg Sabbia	g/Kg Argilla
Bias stimato su 48 campioni	-97.76	16.74
Bias stimato su 6 campioni selezionati	-92.56	16.65

Az. Fondazione Bolognini




Le stime prodotte dalla calibrazione LOCAL sviluppata su tutto l'areale della pianura padana richiedono per la tessitura una correzione dell'errore sistematico (bias) che può essere effettuata sui pochi campioni analizzati per la taratura del segnale geoelettrico

MAPPA DI VARIABILITÀ TESSITURALE STIMATA

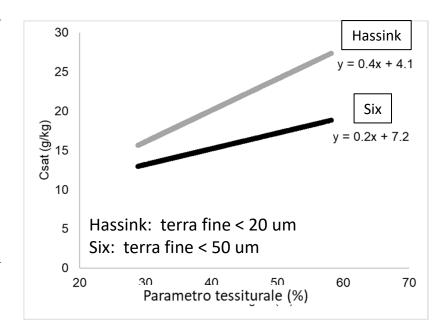


y = 26.963x - 237.31 $R^2 = 0.73$

Mappa del deficit di carbonio

Stima della capacità di stoccare carbonio

STIMA DELLA CAPACITÀ MASSIMA DI STOCCAGGIO DI CARBONIO DI UN SUOLO


• La quantità massima di carbonio stoccabile da un suolo dipende dalla percentuale di frazioni fini (limo+argilla) che sono in grado di proteggere la sostanza organica da fenomeni ossidativi.

Csat = QUANTITA' DI CARBONIO MASSIMA CHE IL SUOLO RIESCE A PROTEGGERE

Overview on approaches to estimate the SOC storage capacity for soils under different climates, land uses and clay types based on linear regressions with the fine mineral fraction (silt and clay particles $< 20/ < 50 \,\mu m$).

Study	Climate	Land use	Clay type	Soil depth	n	Fine fraction	Linear regression	r
Hassink, 1997	Temperate and tropical	Grassland	Diverse	0–10 cm	33	< 20 μm	4.09 + 0.37 × ff < 20	0.89
Feller and Beare, 1997	Tropical	Uncultivated	1:1	0-20 cm	25	$< 20 \mu m$	$-2.3 + 0.49 \times \text{ff}_{< 20}$	0.91
		Cultivated			25		$3.2 + 0.29 \times \text{ff}_{< 20}$	0.95
Six et al., 2002a	Diverse	Cropland	Diverse	-	146	$< 20 \mu m$	$4.38 + 0.26 \times \text{ff}_{< 20}$	0.41
		Grassland					$2.21 + 0.42 \times \text{ff}_{< 20}$	0.44
		Forest					$-2.51 + 0.63 \times \text{ff} < 20$	0.55
		Cropland	Diverse		66	$< 50 \mu m$	$7.18 + 0.20 \times \text{ff} < 50$	0.54
		Grassland					$16.33 + 0.32 \times \text{ff}_{< 50}$	0.35
		Forest					$16.24 + 0.24 \times \text{ff}_{< 50}$	0.35
		Diverse	1:1		47	$< 20 \mu m$	$1.22 + 0.30 \times \text{ff}_{< 20}$	0.74
			2:1		93		$3.86 + 0.41 \times ff_{< 20}$	0.39
		Diverse	1:1		10	< 50 µm	$5.50 + 0.26 \times \text{ff} < 50$	0.38
			2:1		52		$14.76 + 0.21 \times \text{ff}_{< 50}$	0.07
Zhao et al., 2006	Temperate	Cropland	-	0-15 cm	12	$< 20 \mu m$	$-0.52 + 0.22 \times \text{ff} < 20$	0.88
Liang et al., 2009	Temperate	Grassland	2:1	0-30 cm	27	$< 20 \mu m$	$0.36 \times \text{ff}_{< 20}$	0.51
Feng et al., 2013	Diverse	Diverse	1:1	-	101	$< 20 \mu m$	$1.04 + 0.23 \times \text{ff}_{< 20}$	0.72
			2:1		241	$< 20 \mu m$	$1.68 + 0.32 \times \text{ff}_{< 20}$	0.52
Beare et al., 2014	Temperate	Grassland	Allophanic	0-15 cm, 15-30 cm	29	$< 20 \mu m$	$1.35 \times ff_{< 20}$	-
			Non-allophanic		184		$0.62 \times ff_{< 20}$	-
Wiesmeier et al., 2015a	Semi-arid	Grassland	2:1	0-10 cm	14	$< 20 \mu m$	$-0.23 + 0.36 \times \text{ff} < 20$	0.98

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., ... & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149-162.

CALCOLO E MAPPATURA DEL CARBON DEFICIT uanto carbonio già è presente, protetto dalla frazione fine del

Chen, S., Soil & Tillage Research, https://doi.org/10.1016/j.still.2018.11.001

- E' possibile stimare quanto carbonio già è presente, protetto dalla frazione fine del suolo
 - Catt = QUANTITA' DI CARBONIO GIA' STABILIZZATA = Carbonio organico (g kg-1) * 0.85 (Chen et al., 2018)
- La differenza tra Csat e Catt è il deficit di carbonio ovvero il carbonio ancora potenzialmente stoccabile nel suolo

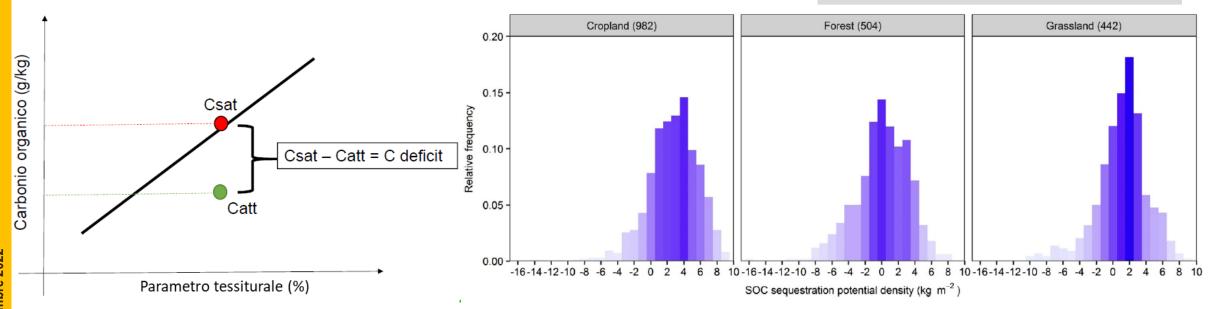
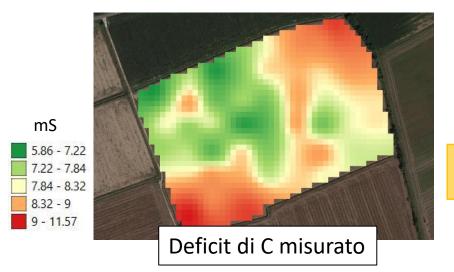


Fig. 1. Relative frequency distribution of SOC_{spd} for three land uses in topsoil (0–30 cm). The number of samples is indicated for each land use.

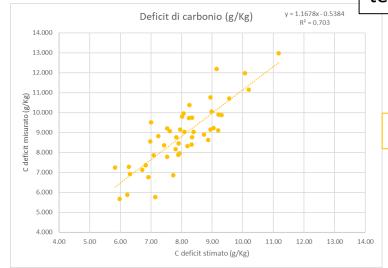

 Sulla base delle mappe di tessitura e di sostanza organica ottenute con metodi speditivi (mappa geolettrica + analisi NIR di un numero ridotto di campioni) è possibile mappare il C deficit

ENSI: 01 dicembre 2022

ELABORAZIONE MAPPE DI PRESCRIZIONE

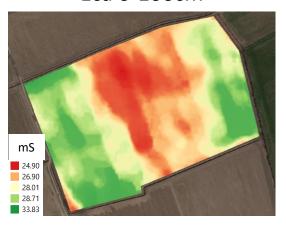
Az. FMB

Deficit di carbonio (g/Kg)

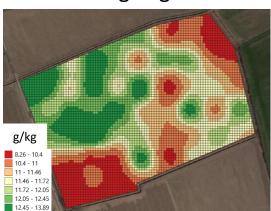

C_def= f(silt+clay, Corg)

Validazione su griglia

Deficit di C stimato su mappa tessiturale stimata e di SO NIR



 $R^2 = 0.703$


LE MAPPE DI PRESCRIZIONE

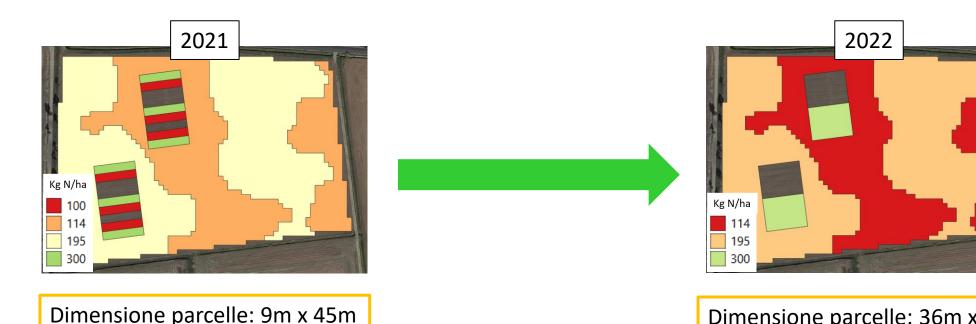
Eca 0-100cm

C organigco

C deficit

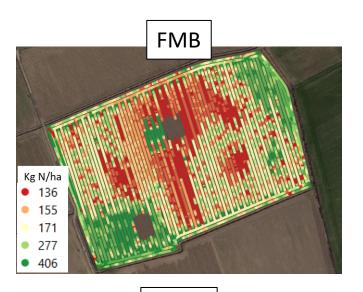
Mappa di prescrizione

- La dose media di campo rispetta i limiti imposti dalla normativa
- Alle aree caratterizzate da alto carbon deficit è stata associata una dose maggiore di fertilizzante e viceversa
- La disproporzione è stata effettuata, per il primo anno, applicando un fattore arbitrario



RISULTATI DEL SECONDO ANNO DI SPERIMENTAZIONE IN CAMPO

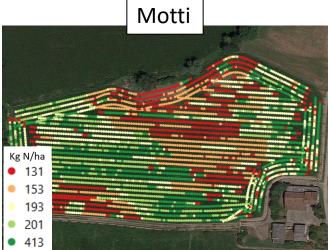
DISTRIBUZIONE CONCIME ORGANICO MODIFICA DISEGNO SPERIMENTALE


Dimensione delle parcelle modificata per assecondare le larghezze di lavoro delle macchine operatrici: 6m di larghezza della distributrice di concime organico

Dimensione parcelle: 36m x 45m

- 3.5m di larghezza della sarchia-interratrice
- 7.5m larghezza della barra di raccolta

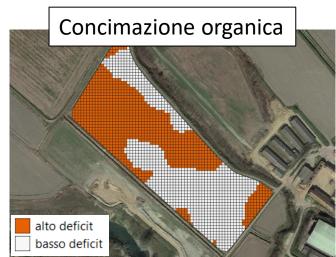
DISTRIBUZIONE CONCIME ORGANICO VALUTAZIONE DELLE OPERAZIONI

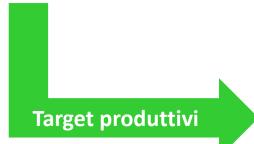


	[N] (g/Kg)
Misurata	6.75
Stimata	6.8

	Desiderato	Reale
Kg di N	2061	2049
Kg di N/ha	166	165

	Desiderato	Reale
Kg di N	506	501
Kg di N/ha	167	169




CONCIMAZIONE DI COPERTURA

Azienda partner	Concime minerale (Kg/ha)
Bonetti	208
Evergreen	242
FMB	306
Penati	169

STAGIONE 2022: SICCITA' ED ELEVATE TEMPERATURE

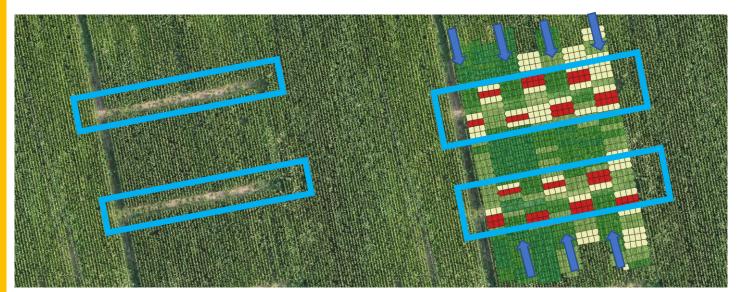
	Precipitazi	oni (mm)	Giorni T _{max} >33°C	
	2021	2022	2021	2022
San Giuliano M. (MI)	483	143	2	16
S.Angelo L. (LO)	547	184	10	35
S. Giorgio in L. (PV)	526	338	9	33
Basiglio (MI)	521	119	3	23
Orzinuovi (BS)	599	252	15	39

MAPPE DI RESA

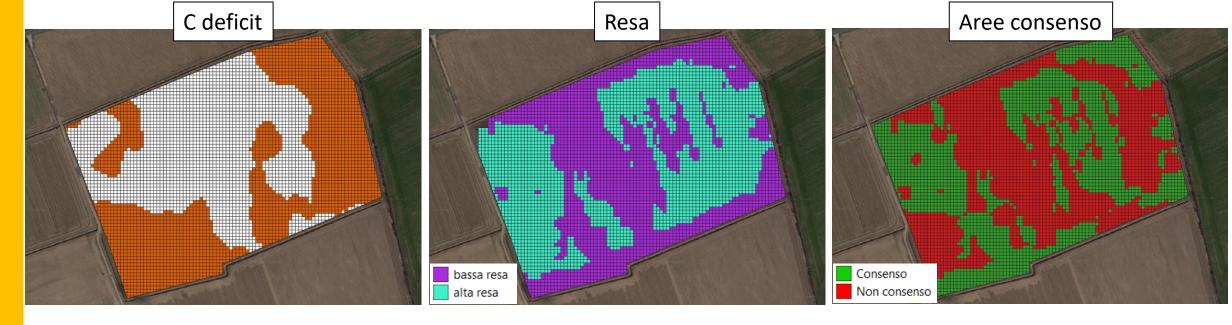
MAPPATURA DELLA PRODUZIONE

Azienda partner	Granella tq (t/ha)
Fondazione Morando Bolognini	9.1

Azienda partner	Silomais tq (t/ha)
Bonetti	60.6
Penati	46.9
Motti	37.1

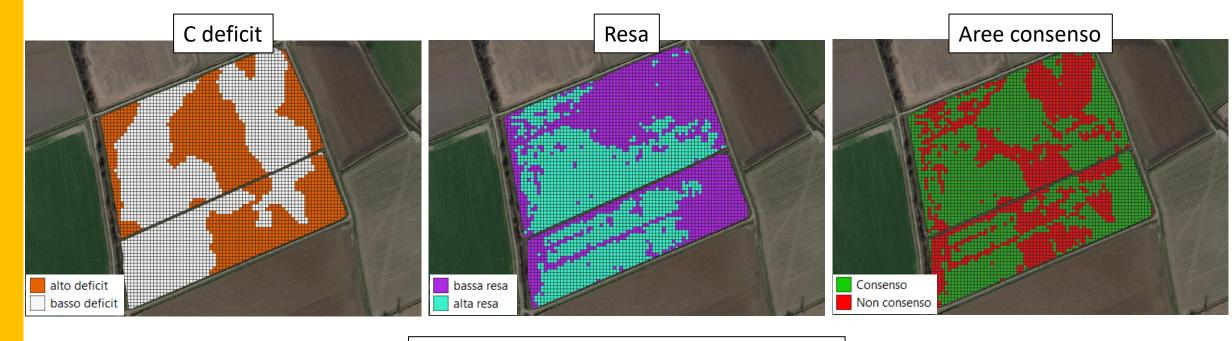


MAPPE DI RESA – PROBLEMATICHE



AREE CONSENSO FMB (Cdef - resa)

Azienda	Cdef (g/Kg)		
	Min	Max	
FMB	6.8	9.6	


- Il campo è caratterizzato da alti valori di carbon deficit ma da **poca variabilità**.
- La distribuzione di N minerale ha compensato l'effetto della concimazione organica

Area consenso	51%
Area non consenso	49%

CONSENSI: 01

AREE CONSENSO PENATI (Cdef – resa)

Azienda	Cdef (g/Kg)	
	Min	Max
Penati	2.0	8.0

- Il campo è caratterizzato da alta variabilità dei valori di carbon deficit.
- Non è stata effettuata concimazione minerale di copertura e ciò rende visibili gli effetti della concimazione organica

Area consenso	62%
Area non consenso	38%

EFFICACIA DELL'N DA LIQUAME **ALLA DOSE MASSIMA**

 Δ produzione utile (Kg ss/ha) Δ apporto di N (Kg/ha)

		Kg p.u. per Kg di N
Penati 1	alto Cdef	-18.3
	basso Cdef	6.4
Penati 2	alto Cdef	-13.2
	basso Cdef	20.5

		Kg p.u. per Kg di N
FMB	alto Cdef	15.7
	basso Cdef	27.9

ULTIMI STEP

- Con la conclusione del secondo anno di attività sperimentali in campo, si è evidenziato l'importanza di conoscere le caratteristiche dei suoli agrari e la composizione dei concimi organici per una corretta modulazione delle dosi da apportare.
- Lo storico dei dati raccolti verrà utilizzato per ottimizzare l'algoritmo presentato nell'ambito del proseguimento delle attività del progetto Infotec-N (in attesa di valutazione da parte dell'ente finanziatore).
- Collaudo in campo del sistema prototipale sviluppato nei tre anni di attività progettuale.

Grazie per l'attenzione

